본문 바로가기

선형분류2

# 14. 선형 분류 (Linear Classification) 지난 포스트에서 선형 분류에 대해 자세히 다루지 못한것 같아 이번에 좀 자세히 다루려고 한다. 복습을 간단하게 하자면, 지도 학습에는 크게 분류와 회귀 문제가 존재한다. 그리고 회귀 문제는 데이터들을 가장 잘 나타내는 선을 찾는 것이 목적이다. 분류 문제도 회귀 문제와 메커니즘은 비슷하지만, 찾고자 하는 선의 목적이 다르다. 분류는 데이터들을 가장 잘 분류하는 선을 찾는 것이 목적이다. 즉, 회귀의 선은 데이터들 사이의 거리가 가까운 선을 찾으려고 하지만, 분류는 (클래스별로)거리가 먼 것을 찾으려고 하는 것이다. 사실 위의 그림을 이해를 위해 선으로 표현했지만, 선형 분류의 의미를 엄밀히 말하면 데이터를 잘 분류할 수 있는 초평면(hyperplane)을 찾는 것이라고 해야 정확한 의미이다. 이번 포스트.. 2021. 12. 3.
# 11. 선형 분류와 선형 회귀 (Linear Classification & Linear Regression) 이번 포스트에서는 선형 분류와 선형 회귀에 대해 다뤄본다. 본 내용을 이전에 지도 학습(Supervised Learning)에 대해 간단하게 다루고 넘어가겠다. 지도 학습은 입력 데이터와 정답 데이터가 같이 주어져 학습하는 방식을 의미한다. 즉, 학습할 때 입력 데이터를 통해 머신러닝 모델이 예측한 데이터와 정답 데이터를 비교하면서 생기는 오차(Residual)를 보정해나가는 것을 의미한다. 근데 왜 갑자기 지도 학습에 대해 언급을 했을까? 그것은 지도 학습의 대표적으로 분류(Classification) 문제와 회귀(Regression) 문제가 있기 때문이다. 분류와 회귀는 둘다 예측 알고리즘이다. 그러나 무엇을 예측하는지가 다르다. 분류는 이산적인 값을 예측하는데에, 회귀는 연속적인 값을 예측하는데에 .. 2021. 11. 9.