본문 바로가기

분해5

# 10. SVD (Singular Value Decomposition) 사전 지식 직교행렬 (othogonal matrix) 직교행렬은 각 열벡터가 서로 직교하는 행렬을 의미하며, 각 열벡터의 스칼라값이 1일 경우, 해당 행렬은 정규직교행렬이라고 한다. 대각행렬 (diagonal matrix) 대각행렬은 주대각선 요소에만 값이 존재하는 행렬을 의미한다. 그러므로 대각행렬에 대한 전치행렬(transpose matrix)은 결국 자기 자신이다. 고유값 분해 (eigen value decomposition) 1편, 2편 SVD (Singular Value Decomposition) SVD의 정의는 특정 벡터들이 서로 직교할 때, 해당 벡터들에 선형변환 $A_{m \times n}$를 취한 경우, 선형변환된 벡터들이 크기는 변하더라도 여전히 직교하는가? 의 의미를 지니고 있다. 행.. 2022. 1. 17.
# 9. 고유값 분해 (Eigen-value Decomposition) - 2 저번 포스트에서는 고유값과 고유벡터에 대해서 알아보았다. 이번 포스트에서는 실제로 행렬 A에 대해 고유값 분해를 하는 과정에 대해 알아보겠다. 우선, $n \times n$ 행렬 A에 대해 고유값과 그에 대응하는 고유벡터들을 구해야한다. 그리고 고유벡터들($v_i$)을 모아둔 행렬 $V$를 다음과 같이 정의할 수 있다. 두 번째 식에 각각의 열벡터(고유벡터)에 해당하는 고유값을 곱해보자. 그 결과 행렬 A와 V로 위와 같이 표현할 수 있다. 마지막으로 고유값들을 대각성분에 모아둔 행렬을 보자. 네 번째 식을 통해 AV 행렬을 인수분해가 가능하다. 다섯번째 식에서 각 열벡터(행렬 V의 고유벡터)들이 선형독립이라면 아래와 같이 행렬 A를 표현할 수 있다. 사실 아직 행렬 A를 분해하는 의미를 설명하지 않았다.. 2021. 11. 23.
# 8. QR 분해 (QR Decomposition) - 2 저번 포스트에 이어 직교 행렬과 실제로 QR 분해 활용에 대해 알아봅니다. 결론부터 얘기하면 직교 행렬은 곧 직교 좌표계를 의미한다. 행렬의 각 열벡터가 직교할 경우 해당 행렬은 직교 좌표계를 의미한다. 정규직교행렬은 각 열벡터를 정규화함으로써 각 열벡터의 크기가 1인 행렬을 의미한다. 즉, 정규직교행렬은 서로 직교하는 크기가 1인 기저벡터들의 집합이라고 정의할 수 있겠다. 선형 시스템의 A는 좌표계를 의미한다. 해당 A 행렬이 직교 행렬일 경우 역행렬을 통해 해를 구할 필요가 없다. 위의 투영 벡터 공식을 보면 알 수 있다. 벡터 u를 벡터 a에 투영했을 때 는 기저 a에 대한 좌표값이다. 즉, 벡터 a를 얼마나 스칼라배를 해야하는지를 의미(기저 a에 대한 좌표)하는 것이다. 위 개념을 예시에 적용하면.. 2021. 10. 5.
# 8. QR 분해 (QR Decomposition) - 1 QR 분해의 내용은 두 포스팅에 걸쳐서 진행하겠습니다. QR 분해는 정방 행렬($A_{m \times m}$)을 분해하는 방법 중 하나로 투영(projection)을 기반으로 하는 알고리즘인 그람 슈미트 과정(Gram-Schmidt Process)로 진행한다. 고로 투영을 이해하기 위해 기본적으로 벡터의 정의부터 파악하려고 한다. 벡터를 물리적으로 정의하면 방향과 스칼라의 조합이다. 벡터 v의 방향은 화살표의 방향, 크기(스칼라 형태)는 화살표의 길이를 의미한다. 벡터의 수학적인 정의는 수들의 집합이며 각 수들은 각 축에 대한 좌표값이다. 예를 들어, 벡터 v = (1, 2, 3) 이리면 원점으로부터 x축으로는 1, y축으로는 2, z축으로는 3의 지점을 향하는 화살표이다. 수들의 갯수가 늘어날수록 차원.. 2021. 10. 5.
# 2. LU 분해 (LU Decomposition) https://dev-ryuon.tistory.com/46 # 1. 가우스 소거법 (Gauss Elimination) [서론] 선형 시스템은 해를 가지는 케이스가 총 3가지로 나누어진다. 1. 해가 하나인 경우 - x=2 인경우에만 성립한다. ex) 3x = 6 2. 해가 여러개인 경우 - 어떠한 x를 대입하더라도 성사된다. ex) 0x = 0 dev-ryuon.tistory.com 이 포스트는 가우스 소거법에 대해 숙지하고 보시는 것을 추천합니다. 이론 LU 분해는 Gauss Elimination 을 행렬이라는 자료구조로 표현한 것을 의미한다. 숫자는 인수분해가 가능하다. 행렬도 숫자와 마찬가지로 분해가 가능하다. 행렬을 분해하는 방법에는 대표적으로 세 가지가 있다. LU Decomposition QR.. 2021. 6. 13.