본문 바로가기

선형변환2

# 9. 고유값 분해 (Eigen-value Decomposition) - 2 저번 포스트에서는 고유값과 고유벡터에 대해서 알아보았다. 이번 포스트에서는 실제로 행렬 A에 대해 고유값 분해를 하는 과정에 대해 알아보겠다. 우선, $n \times n$ 행렬 A에 대해 고유값과 그에 대응하는 고유벡터들을 구해야한다. 그리고 고유벡터들($v_i$)을 모아둔 행렬 $V$를 다음과 같이 정의할 수 있다. 두 번째 식에 각각의 열벡터(고유벡터)에 해당하는 고유값을 곱해보자. 그 결과 행렬 A와 V로 위와 같이 표현할 수 있다. 마지막으로 고유값들을 대각성분에 모아둔 행렬을 보자. 네 번째 식을 통해 AV 행렬을 인수분해가 가능하다. 다섯번째 식에서 각 열벡터(행렬 V의 고유벡터)들이 선형독립이라면 아래와 같이 행렬 A를 표현할 수 있다. 사실 아직 행렬 A를 분해하는 의미를 설명하지 않았다.. 2021. 11. 23.
# 7. 선형 변환 (Linear Transform) 이론 함수는 정의역(Domain)과 공역(Codomain)간의 1대 1 mapping 관계를 의미한다. 함수는 크게 선형함수와 비선형함수로 분류할 수 있다. 선형함수는 말그대로 기하학적으로 Linear한 형태의 함수를 의미한다. 선형함수에 해당하기 위한 조건은 다음과 같이 2가지가 있다. 이제 함수에 대해 간단하게 짚었으니, 변환(transformation)에 대해 알아볼 차례이다. 변환은 입출력이 벡터인 함수를 의미한다. 특히, 입력 벡터와 출력 벡터의 차원이 동일한 경우 ($n$-벡터와 $m$-벡터에 대해 $n=m$인 경우) 변환이라 칭하지 않고 연산자(operator)라고 한다. 선형시스템에서 행렬 A는 ($m \times n$ 행렬) $n$-벡터를 입력으로 받아 $m$-벡터를 출력으로 하는 변환(.. 2021. 9. 23.