전체 글114 # 3. Printing Arrays 이번 포스트에서는 넘파이 배열을 출력하고 읽는 방법에 대해 다뤄보려고 한다. 넘파이 배열의 차원이 높아질수록 읽기 어려워진다. 그러나 다음과 같은 읽는 방법을 따르면 문제가 없을 것이다. 마지막 축은 왼쪽에서 오른쪽으로 출력된다. 두 번째 ~ 마지막 배열들은 위에서 아래로 출력된다. 1차원 배열은 가로로 출력된다. 2차원 배열은 행렬로 출력된다. 3차원 배열은 행렬의 리스트로 출력된다. # 1d array a = np.arange(6) print(a) >>> [0 1 2 3 4 5] # 2d array b = np.arange(12).reshape(4, 3) print(b) >>> [[ 0 1 2] [ 3 4 5] [ 6 7 8] [ 9 10 11]] # 3d array c = np.arange(24)... 2022. 2. 19. # 1. CUDA, cuDNN 설치 및 tensorflow-gpu 환경 세팅 이번 포스트는 tensorflow에서 GPU를 세팅하는 방법에 대해 작성한다. 물론 여기보다 더 잘 설명된 글도 많지만 굳이 다시 찾아보지 않으려고 작성한다. 무튼, 엔비디아 그래픽 카드(RTX 3060 TI)를 기준으로 글을 작성한다. 그리고 가상환경을 기준으로 세팅할 것이기 때문에 가상환경에 대해 모르는 분은 해당 포스트를 참고하면 도움이 된다. 엔비디아 그래픽 드라이버 설치 구글에 돌아다니는 글들을 보면 흔히 무작정 CUDA 부터 설치하는 경우가 많은데, 이전에 해야 몇 가지 작업이 있다. (기존에 엔비디아 그래픽 드라이버가 설치되어 있는 분이라면 이 단계는 뛰어넘어도 된다.) 엔비디아 그래픽 드라이버가 설치부터 하자. 이 과정을 수행하지 않으면, 인텔 CPU를 사용한다면, 내장 그래픽으로 모니터를.. 2022. 1. 25. # 0. Python 가상환경 세팅 (feat. Anaconda) Anaconda 설치 가장 먼저 해야할 것은 Anaconda를 설치하는 것이다. Anaconda를 통해 우리는 가상환경을 구축할 수 있다. 굳이 가상환경을 사용하는 이유에 대해 간단히 언급하자면, 상황별로 사용해야 하는 모듈들 혹은 버전이 상이할 것이다. 이를 위해 용도별로 적합한 가상환경을 구축한다. https://www.anaconda.com/ Anaconda | The World's Most Popular Data Science Platform Anaconda is the birthplace of Python data science. We are a movement of data scientists, data-driven enterprises, and open source communities. w.. 2022. 1. 25. # 2. np.random 이번 포스트에서는 numpy 패키지중 랜덤으로 배열을 생성하는 메소드들에 대해 알아볼 것이다. np.random.rand 이 메소드의 인자는 정수들을 여러개 나열할 수 있다. (가변인자) 이 정수들은 생성될 배열의 차원이 된다. 각 요소들은 균일분포에서 0~1 사이의 값들로 이루어져 있다. import numpy as np r = np.random.rand(4, 3, 3) print(r.shape) print(r) >> (4, 3, 3) [[[0.24380173 0.55585745 0.68894391] [0.73212786 0.32187644 0.6370955 ] [0.19283783 0.32313824 0.54533787]] [[0.10738025 0.06398702 0.82363365] [0.2943.. 2022. 1. 17. # 10. SVD (Singular Value Decomposition) 사전 지식 직교행렬 (othogonal matrix) 직교행렬은 각 열벡터가 서로 직교하는 행렬을 의미하며, 각 열벡터의 스칼라값이 1일 경우, 해당 행렬은 정규직교행렬이라고 한다. 대각행렬 (diagonal matrix) 대각행렬은 주대각선 요소에만 값이 존재하는 행렬을 의미한다. 그러므로 대각행렬에 대한 전치행렬(transpose matrix)은 결국 자기 자신이다. 고유값 분해 (eigen value decomposition) 1편, 2편 SVD (Singular Value Decomposition) SVD의 정의는 특정 벡터들이 서로 직교할 때, 해당 벡터들에 선형변환 Am×n를 취한 경우, 선형변환된 벡터들이 크기는 변하더라도 여전히 직교하는가? 의 의미를 지니고 있다. 행.. 2022. 1. 17. # 1. Numpy Array Creation 지난 포스트에서는 Numpy에 대해 기본적인 내용들을 살펴보았다. 이번 포스트에서는 Numpy 배열을 생성하는 방법들에 대해 알아보려고 한다. Basic creation import numpy as np a = np.array([1, 2, 3, 4]) print(a) print(a.dtype) print(a.shape) >> [1 2 3 4] int64 (4,) 기본적인 배열 생성 방법은 np.array 메소드에 인자로 배열의 요소로 들어갈 시퀀스를 전달하는 방법이다. b = np.array([(1.5, 2, 3), (4, 5, 6)]) print(b) print(b.dtype) print(b.shape) >> [[1.5 2. 3. ] [4. 5. 6. ]] float64 (2, 3) 다차원 배열을 생성.. 2022. 1. 9. 이전 1 2 3 4 5 6 7 8 ··· 19 다음