reshape2 # 1. tf.keras.backend.permute_dimensions a = np.arange(12).reshape((3, 4)) t = tf.constant(a) t >>> tf.Tensor( [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]], shape=(3, 4), dtype=int32) 위와 같은 (3, 4) dimension을 갖는 텐서가 있다. axis=0은 3개의 원소, axis=1은 4개의 원소가 존재한다. 이 텐서를 전치시키려고 한다면 다음과 같이 할 수 있다. tf.keras.backend.permute_dimensions(t, pattern=(1, 0)) >>> 여기서 중요한 인자는 pattern인데, (1, 0)의 의미는 텐서 t를 (axis=1의 값, axis=0의 값)차원으로 재구성한다는 의미이다. 즉, (4, 3) 차원으로 변형되.. 2022. 3. 17. # 3. Printing Arrays 이번 포스트에서는 넘파이 배열을 출력하고 읽는 방법에 대해 다뤄보려고 한다. 넘파이 배열의 차원이 높아질수록 읽기 어려워진다. 그러나 다음과 같은 읽는 방법을 따르면 문제가 없을 것이다. 마지막 축은 왼쪽에서 오른쪽으로 출력된다. 두 번째 ~ 마지막 배열들은 위에서 아래로 출력된다. 1차원 배열은 가로로 출력된다. 2차원 배열은 행렬로 출력된다. 3차원 배열은 행렬의 리스트로 출력된다. # 1d array a = np.arange(6) print(a) >>> [0 1 2 3 4 5] # 2d array b = np.arange(12).reshape(4, 3) print(b) >>> [[ 0 1 2] [ 3 4 5] [ 6 7 8] [ 9 10 11]] # 3d array c = np.arange(24)... 2022. 2. 19. 이전 1 다음